
Application Security
Editors: Marty Stytz, mstytz@att.net

James Whittaker, jw@cs.fit.edu

Why Secure Applications
Are Difficult to Write

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY 81

discuss software security as an aware-
ness issue, because software that is
unaware of its potential vulnerabili-
ties has no chance of being secure.
Only by being aware of potential
threats and using vigilant defensive
countermeasures can we hope to
write secure applications, and we
can only achieve security through
awareness and understanding of
these issues.

I categorize application secu-
rity concerns into four specific is-
sues: input streams, output pro-
duction, internal data, and algo-
rithms and computation.

The first two concerns—input
and output—are related to the envi-
ronment in which applications exe-
cute. The last two—data and algo-
rithms—are related to an application’s
awareness of its own internal secrets.
Those secrets could be the data an
application stores or the algorithm it
uses to perform its work. All four is-
sues relate to awareness: secure soft-
ware must always be aware of what is
going on, both inside its perimeter
and out to respond effectively to ma-
licious threats.

Securing input
Inputs are the mechanism that soft-
ware employs to communicate

with its users. In the late 1980s and
early 1990s, the software reliability
engineering community, particu-
larly the Cleanroom community,
pushed tests prioritized by their re-
lationship to actual use; tests that
users are likely to apply were given
the highest priority. But hackers are
users too, and they are much more
likely to apply input combinations
that normal users would never
think of. Security testing must,
therefore, take a different focus
than reliability testing to account
for malicious users.

Malicious input can often cause
software to fail (resulting in denial
of service) or to execute foreign in-
structions (letting a remote user ex-
ecute code on another person’s
computer). Inputs must be care-
fully checked for validity before
they are processed, or the applica-
tion could cause undesirable and
insecure behavior.

Securing input interfaces re-
quires a series of checks on inputs
and their sources to ensure that
users are who they say they are and
that their input will not compro-
mise the system on which the appli-
cation resides.

The first line of defense is user
authentication—software must

identify a user as a valid entity with
which it is authorized to commu-
nicate. Malicious users who gain
access through or around authenti-
cation code are particularly danger-
ous because the application will
trust them. Techniques for authen-
ticating users range from chal-
lenge–response password entry to
biometric devices that read hand
geometry, fingerprints, or retinal
patterns. The idea of communica-
tion with only legitimate, friendly
users is appealing, but authentica-
tion schemes are imperfect and
subject to counterfeiting and
forgery. Therefore, a more com-
plete authentication scheme is
often required.

A second line of defense is guard-
ing against authenticated users ap-
plying inputs that would cause their
privilege level to escalate or let them
access restricted functionality. This
means that even trusted users must
be monitored and any unauthorized
behaviors must be stopped. Good
security is not achieved through
perimeter defense; it requires know-
ing who a user is as well as what that
user is doing.

A third line of defense comes
with the realization that input vali-
dation and user authentication are
not tasks that are performed only
once. A malicious user might try to
assume a legitimate user’s identity
after the authentication process has
succeeded; alternatively, they might
try to add malicious content to a
data file after the file has been vali-
dated. These “bait and switch” at-
tacks are common and require soft-
ware to be constantly vigilant
against users and inputs that are not
what they seem to be.

JAMES

WHITTAKER

Florida TechD
eveloping good software is hard enough, but

when software must be both good and secure,

the result is many extra layers of complexity that,

unfortunately, the computer science community

is only just learning how to handle. In this issue’s installment, we

Application Security

In the event that inputs come from
inherently untrustworthy sources
such as the Internet, each attribute of
such inputs must be validated. To en-
sure security, inputs must be the cor-
rect type, of acceptable length (to
avoid buffer overflow), and have con-
tent that the application can securely
process. Executable content must be
used cautiously.

Secure applications should be
paranoid about with whom they are
communicating and what informa-
tion they convey through that com-
munication. Applications that pro-
cess security-critical data must be
vigilant against both users (whether
they are trusted or not) and the input
that they supply.

Securing output
An application’s secrets are often de-
livered to intended recipients by
transmitting a file or displaying out-
put on a monitor. Authenticating
the output’s recipients is just as diffi-
cult as authenticating users who sup-
ply input—and just as important.

For secrets that are transmitted
over a network, it is crucial that we
use strong, well-implemented en-
cryption, which could well be the
most studied aspect of modern
computer security. Indeed, many
strong ciphers are impossible to
crack in a reasonable time; how-
ever, shoddy implementations of
strong ciphers are readily cracked.

If an encryption key is inadver-
tently stored in a conspicuous place
(such as the system registry or a
file), then the cipher’s strength has
little effect. Likewise, the cipher
will be weak and the information
likely exposed if poor, random
number-selection algorithms en-
crypt it.

Secret information should always
be encrypted when transmitted over
a network or at rest on a file system.
Copy protection might also be nec-
essary for certain data types. How-
ever, the information eventually
must be decrypted and displayed for
user consumption. This is when pro-
tection is at its most difficult—be-
cause information stored in memory
can be available to other processes
and is subject to being copied or
even captured via something as in-
nocuous as a screen dump.

Securing outputs so that they are
available to only legitimate users is
perhaps even more difficult than se-
curing inputs. Application develop-
ers must be aware of and constantly
vigilant against potential threats.
Without awareness of the ways and
means that an attacker can use to ac-
cess an application’s secrets, there is
little chance that those secrets will be
adequately protected.

Securing
internal data
Securing internal data is much the

same as securing external outputs.
Sensitive data should be encrypted
when at rest and validated when
used. Data in use should be mini-
mally exposed to potential attackers.

The biggest exposure point is
data in memory. All data must even-
tually hit a memory location at some
time; if the data is used in some
computation or sent to an output
device, then it must be stored in
memory unencrypted. This is when
it is most vulnerable. Techniques to
obfuscate memory usage, flush
memory, and lock interprocess
memory access are an application’s
best defense against exploitation of
its secret data.

Developers must be aware of
when, and for how long, sensitive
data remains in the memory’s unpro-
tected state. They must also be aware
of the ways in which they can protect
such data and the protection mecha-
nisms’ technical limitations.

Securing algorithms
and computation
There are two aspects to securing
an application’s internal code. The
first is identical to securing data; if
an algorithm is proprietary and
perceived as at risk of being reverse
engineered, then it should be en-
crypted when at rest and protected
from debugging while being exe-
cuted. This includes simple, oper-
ating-system-provided antidebug-

82 IEEE SECURITY & PRIVACY � MARCH/APRIL 2003

Several books on secure software development have surfaced

recently. Michael Howard and David LeBlanc’s excellent book

Writing Secure Code (Microsoft Press, 2001) should be required

reading for every developer. It is a good resource of Windows-

specific security issues that developers must navigate and contains

a vast store of secure coding wisdom that any programmer would

be foolish to ignore. Gary McGraw and John Viega’s Building Secure

Software (Addison-Wesley, 2001) is also a treasure trove of

warnings, advice, and techniques that educates developers on a

wide array of security concerns.

The book that remains the classic in the cryptology field is

Bruce Schneier’s Applied Cryptography (Wiley, 1994), but my

favorite, general-purpose security book is Ross Anderson’s Security

Engineering (Wiley, 2002). It explains the field from top to bottom

in a readable and understandable fashion. If every computer

science student read these two books, the digital world would be a

much more secure place. Finally, I offer my book How to Break

Software (Addison-Wesley, 2002) as the closest thing the world has

to a testing book for software security. Although it focuses on

more general functional concerns, it shows how software can be

broken and thus gives developers insights into the minds of their

adversaries. Happy reading.

Further reading

Application Security

ging APIs and more complicated
obfuscation and memory-protec-
tion mechanisms.

The second aspect of code secu-
rity is preventing code from per-
forming insecure behavior. The
first rule of secure coding should be
that of least privilege; that is, the
code should run with the mini-
mum amount of privilege neces-
sary to perform its prescribed tasks.
Code should run with admin or
root privilege only if it is absolutely
necessary to do so. And if such
privilege is necessary, then addi-
tional security precautions are defi-
nitely warranted.

If an application has code that
monitors network traffic for input,
such as a Web or mail server, then it
should open only those ports that
have traffic with which it is inter-
ested. The less contact an application
has with raw network traffic, the less
likely it is to be tricked into perform-
ing ill-advised computation.

N ot all security problems can be
solved with software. Software

pirates can still steal a vendor’s pro-
prietary music with old-fashioned
recording devices. Hackers can use
cameras to photograph sensitive in-
formation on a computer screen.
But awareness of the categories of
problems that do exist and that can
be solved with software is a start. In
future columns, we will be exploring
potential problems and solutions in
greater detail.

James Whittaker is a professor of com-
puter science at Florida Tech and direc-
tor of the Center for Information
Assurance. His research interests are tools
and methods for penetration testing,
reverse engineering, binary instrumenta-
tion, and software protection. He received
a BA in computer science and mathe-
matics from Bellarmine College, and an
MSc and PhD in computer science from
the University of Tennessee. He is the
author of How to Break Software (Addi-
son-Wesley, 2002). He is a member of
the ACM and IEEE. Contact him at
jw@cs.fit.edu.

http://computer.org/security/ � IEEE SECURITY & PRIVACY 83

http://computer.org/security

Ensure that your networks operate safely and provide critical
services even in the face of attacks. Develop lasting security
solutions, with this new peer-reviewed publication. Top security
professionals in the field share information you can rely on:

WIRELESS SECURITY
•

SECURING THE ENTERPRISE
•

DESIGNING FOR SECURITY
•

INFRASTRUCTURE SECURITY
•

PRIVACY ISSUES
•

LEGAL ISSUES
•

CYBERCRIME
•

DIGITAL RIGHTS MANAGEMENT
•

INTELLECTUAL PROPERTY
PROTECTION AND PIRACY

•
THE SECURITY PROFESSION

•
EDUCATION

Don’t run the risk!
Be secure.

Order your charter
subscription today.

for

IEEE Security & Privacy

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

