
Data Leakage

SIMON BYERS

AT&T Labs-
Research

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY 23

I t is well known among the more technical computer
user communities that documents written and
stored in the Microsoft Word document format
might contain hidden data. Some communities of

regular computer users are also aware of this fact—for ex-
ample, people working in the legal sector. However,
awareness of this problem is not sufficiently widespread,
especially among nontechnical computer users. Such
people typically use computers at work and at home but
are not computer professionals; thus, they are probably
not aware of the dangers that opaque proprietary file for-
mats can carry in their hidden payloads.

This article demonstrates how to automate and scale
the search for this hidden text effect. The tools we use are
simple and do not require specialized tuning or highly
skilled input. We have (and assume) no knowledge of the
Word document format itself, reinforcing the simplicity
of the techniques discussed. We’ll also consider important
but commonly neglected behavior patterns in the con-
text of this problem.

Hidden text
Based on anecdotal reports from private conversations
and forums across the Internet, we might find the follow-
ing types of hidden text in a typical Word document:

• names and usernames of the document’s creators and
their collaborators,

• organizational information of the users involved,
• text specific to the Word program version and docu-

ment format,
• pathnames of the document in the operating system on

which the document was composed,

• information about the hardware on
which the document was composed,

• printer names and information,
• email headers or Web server information,
• text deleted from the document at some point prior to

the save, and
• text from completely unrelated documents that is only

present due to a bug in Word (as opposed to proclivities
of the format itself).

We can clarify the last item by referring to an incident
that Aviel Rubin and Steve Bellovin told us about in
November 2002. The person they described had two
separate and unrelated Word documents open at once
using MSOffice 97 on MSWindows 98. He then saved
and mailed one of these documents to a mailing list;
everyone on the list then read the document with his or
her usual Word document viewer. One of the mailing list
members noticed (by using a non-Microsoft document
viewer) that the second document was actually hidden
inside the file along with the intended visible one—in
fact, he only saw the hidden one initially. Although we
don’t know how often this happens, this type of occur-
rence can be more catastrophic than most conventional
hidden data mechanisms in terms of data leakage.

Two well-documented public examples illustrate iso-
lated cases of information leaking through hidden text
mechanisms. In February 2003, the UK government is-
sued a report in Word format—ultimately known as the
“Dodgy Dossier”—on the alleged existence of weapons
of mass destruction (WMDs) in Iraq. Some consterna-
tion arose when the names of various editors of the docu-
ment were found hidden inside the file. Ultimately, the

Information Leakage Caused
by Hidden Data in Published
Documents

This article demonstrates mining for hidden text in published

data and concludes that user behavior—in combination with

default program settings—creates an uncomfortable state of

affairs for Microsoft Word users concerned about information

security. The author also presents some countermeasures.

Data Leakage

roles of these four individuals were called into question in
connection with doubts about the quality of British intel-
ligence before the second Iraq war (see www.computer

bytesman.com/privacy/blair.htm). In the late 1990s,
Kenneth Starr issued a report in WordPerfect format
about US President Bill Clinton’s involvement with
White House intern Monica Lewinsky. Quirks in the
format conversion process brought to light footnotes in
the report that ostensibly had been deleted (see http://
catless.ncl.ac.uk/Risks/19.97.html#subj3).

Tools and implementation
In the methods we describe in this article, we use some
commonly available tools:

• Antiword (www.winfield.demon.nl/) is a free, open-
source, command-line tool that turns a Word docu-
ment into plain ASCII text.

• Catdoc (www.45.free.net/~vitus/ice/catdoc/) is simi-
lar to antiword in most respects, but sometimes gives
slightly different results. To view Word documents sent
to them by point-and-click-oriented colleagues, Unix
users routinely use both these tools.

• “Strings” is a standard tool that parses the data in any file
and extracts those segments that are printable strings of
regular text characters.

• Perl is a script programming language useful for manip-
ulating data.

Our method consists of three basic steps that we can sep-
arate both operationally and for the purposes of descrip-
tion here.

Finding content
The first task is to automatically find content to examine.
Our predominant source is the open Internet. To find
documents on the Internet, we could construct a custom
crawler or use the results of existing crawlers; we pick the
latter approach and simply use a mechanized interface to
any of a number of available search engines.1 The result of
this search is a list of URLs that each gives the address of a
Word document on the open Internet.

For search terms, we simply use lists of potentially rel-
evant words. A general data-gathering exercise would

employ random word lists whereas we could construct
targeted lists for document searches specific to a particu-
lar industry or subject type. Example sectors of special in-
terest might include military, government, health care,
education, and corporate. Each of these can be targeted
effectively, albeit with some small amount of error, by use
of appropriate keywords.

Data acquisition
For each URL found with the previous step, we simply
download its associated Word document to disk. We
store it and all its known originations indexed by the
document’s MD5 hash value in a regular file system
tree. We then invert this mapping for use in searches of
content based on origination. This technique is a rou-
tine part of many scaled, open Internet, data-gathering
exercises.

We also can use search-result extension techniques.
One example is to examine all returned URLs for a di-
rectory path component such as /docs/. We then attempt
to get the virtual directory listing and all relevant docu-
ments at that location. This can be a very effective
method of targeting content types on the Internet, typi-
cally expanding results by 20 percent or more.

Hidden data extraction
Once we’ve amassed a sizable collection of documents,
we can apply various methods for finding hidden text
automatically. We use a variety of simple heuristics,
most of which are based on a comparison with the
ASCII text generated from parsing the document with
antiword or catdoc. Neither utility is completely reli-
able in parsing Word documents, so we accept some
noise in our findings. Of course, such noise is to be ex-
pected from an analysis that does not use inside knowl-
edge of hidden data storage, and it’s of little conse-
quence because any specific example that seems to
warrant further scrutiny will be verified more carefully
by hand.

When tables are present, catdoc is generally easier to
work with, but catdoc seems to fail slightly more often
than antiword in general parsing. Using this reference parse,
we can see what each option outputs:

• Antiword method. We compare the reference parse
with a parse taken with the –s option in antiword.
(The –s option explicitly tries to display hidden data.)

• String-matching method. For each string found in an ap-
plication of the strings command to the Word docu-
ment, look for a version of that string in the reference
parse. We first regularize both the string and the refer-
ence parse for white space and line breaks. Any string
not found in the reference parse is deemed interesting.

• Word-matching method. For each word in each string in
the strings output, tabulate the number of occur-

24 IEEE SECURITY & PRIVACY � MARCH/APRIL 2004

The second document was
actually hidden inside the
file along with the intended
visible one.

Data Leakage

rences of that word in the strings output and in the ref-
erence parse. Any word with differing counts in the
two is deemed potentially interesting—any word that
has zero occurrences in the reference parse is even
more so.

We now can apply some simple postprocessing to the
results of these heuristics or combinations of them.

Heuristics and results
We first examine the type of output the three previously
described methods yield:

• The antiword method rarely finds hidden text and
failed on our own canonical examples. The changes
it finds can be very small (such as a punctuation
change) or as large as several deleted lines. This tech-
nique does not reveal usernames, pathnames, and
other metadata.

• The string-matching method yields several kinds of
results. Some are short junk strings, which we can
discount. Username, pathname, printer, and email
data is exposed in this way in such a manner as to
make it instantly recognizable. This method also re-
turns deleted words or lines containing a deleted or
altered word. On Word documents without tables or
too much exotic structure, both the catdoc and anti-
word reference parses return the same results without
much effort.

• The word-matching method yields some information
about the Word document’s internal structure as well as
deleted text. Structural information can consist of two
similar copies of the document text that differ in some
small way. Deleted text shows up most obviously as
words that do not appear in the reference parse but that
do appear in the strings parse, or where the word counts
indicate a difference.

We intentionally restricted our methods to very simple
analysis techniques for two reasons. First, we want to
demonstrate how easy this is to implement, and second,
to demystify this work so that regular Word users can un-
derstand the problem and personally assess their risk.
However, custom Word document disassemblers could
easily be written from scratch or from the source code of
existing utilities such as catdoc, antiword, or OpenOffice.
Doing this requires some knowledge of the document
format or some reverse-engineering expertise, skills that
many individuals possess. We also note the possibility of
connecting to a Windows server and having Word auto-
matically convert documents to an open format, but such
a conversion is generally not robust or fast enough for use
on the scales that we find valuable.

In our experiment, we obtained Word documents at a
rate of about 1,000 per hour through a regular cable

modem using no parallelization. We spent substantial
amounts of the elapsed time in connection timeout
events, so the User Agent timeout should be set quite
short, with only one or two retries attempted. The first
100,000 documents occupied 16 Gbytes of space.

Some of the retrievals resulted in a file that was either
corrupted or not apparently a Word document: we ig-
nored these. All valid Word documents retrieved had
some hidden text in them, as the word- and string-
matching methods found, although some portion only
had the expected Word-related strings and simple meta-
data. As mentioned, applying the antiword method rarely
produced results—in our tests, in only 75 of the first
100,000 documents.

Overall, counting words found by the word-matching
method, about half of the documents examined contained
between 10 and 50 hidden words, a third between 50 and
500 words, and around 10 percent had more than 500.

Here’s an innocuous but real example that illustrates
our findings; it happens to be the first document we
processed during initial code testing with the string-
matching method. All names and organizations have
been changed to protect the innocent:

1|/m/A

3|/o=Fake University/ou=ALUMNI/

cn=Recipients/cn=Bill.Fishman

3|/o=Fake Unversity/ou=ALUMNI/

cn=Recipients/cn=Angela.Torro

1|3x.2

1|5ZH=Ss

1|8n2NLb

1|A.nH

1|Adobe

1|AiPx

1|AknQ

3|Bill Fishman

1|Bill.Fishman

1|Dh6N

1|Ducky

1|HsoT

1|JFIF

2|John Garnfield

3|Angela Torro

1|Angela.Torro

1|MSWordDoc

1|Master Privacy Policy for review -

hardcopy provided to Bill with signoff

sheet

1|Microsoft Word 9.0

1|Microsoft Word Document

1|Normal

1|QDUo

1|Title

www.computer.org/security/ � IEEE SECURITY & PRIVACY 25

Data Leakage

1|VFR9

1|Word.Document.8

1|bjbjU

1|dGAMb

1|eNcj

1|koz.com

1|l ja

1|lbXB

1|oVfu

1|tSYd

5

1|yHYL

We include the (sanitized) raw results before post-
processing to show how usable the returned results are.
The names of the three people involved and their affilia-
tions are obviously interesting, as is the deleted notifica-
tion that this document was once a review copy. This no-
tification is a benign illustration of how the most
dangerous examples of leakage might occur—for in-
stance, in text specifically deleted shortly before publica-
tion, yet it remains hidden within.

The antiword method produced nothing when ap-
plied to this example, but the word-matching method re-
produced the same results in a slightly different manner.
This particular example has a relatively large amount of
the unimportant small junk strings.

The shortest results from applying the string-match-
ing method returned about eight strings. Here’s an exam-
ple, again with the names changed:

2|John Buskind

1|MSWordDoc

1|Microsoft Word 8.0

1|Microsoft Word Document

1|Normal.dot

1|Title

1|Word.Document.8

1|bjbj

There is obviously no interesting hidden text in this
document except the name of the composer. The word-
matching method produced substantially the same results
on this example with a couple of extra junk strings.

Use in higher-level analyses
You can use these techniques as building blocks for
higher-level analyses of data that might have important
end goals with financial and personal consequences. We
can think of two examples, one benign and one less so,
that illustrate this.

Identity theft
Examining the Word documents in our corpus that ap-
pear to be resumes and checking for deleted Social Secu-
rity Numbers (SSNs) hidden in the file is extremely sim-
ple. An individual might include an SSN in the files he or
she sends to prospective employers but delete it from the
version put online to guard against identify theft. It’s even
possible to use a keyword in the initial document search
to target resumes in particular.

Plagiarism detection
Using the methods we described earlier, gathering infor-
mation on whether a document has been cloned or pla-
giarized from another document is possible. The compu-
tational load can be made manageable by first restricting
the search to keywords from the visible text with standard
document-retrieval techniques but then using the hidden
text to gather stronger information.

Recommended
responses to this problem
In considering responses to this effect, let’s look at a real-
istic scenario involving Word documents:

• Alice sends a mission-critical memorandum written in
Word to Bob, who might be in a different organization
or corporation—for example, he could be a client of
Alice’s organization.

• Bob’s supervisor, Cynthia, requests that Bob draft the
weekly TPS reports.

• Bob, liking the format of Alice’s memorandum, simply
copies it, deletes the text, and types the TPS content
into the copy.

• Bob sends the TPS report to Cynthia.
• Cynthia places the TPS report on the external Web.

This event cascade shows how simple everyday ac-
tions can inadvertently place sensitive data squarely in the
public domain. Many Word users behave as Bob does in
our example, so what’s the best way to avoid this kind of
problem?

Our first and simplest recommendation is to cease all
use of Word for any data that you might not want eventu-
ally made public, but our experience with normal corpo-
rate information technology standards and user training
mandates us to consider softer measures.

One such measure might be to force all personnel in
an organization to use a Word document scrubber,

26 IEEE SECURITY & PRIVACY � MARCH/APRIL 2004

The word-matching method
yields some information about
the Word document’s internal
structure as well as deleted text.

Data Leakage

which can be implemented as a desktop tool or as a
firewall filter. Such desktop utilities exist, and their use
is currently recommended in certain circles, mainly in
the legal profession. A primary problem with this pro-
cedure is enforcing its adoption: as with all policy-
mandated security procedures, if it involves an extra
step, it might not get used unless technical measures as-
sist with compliance.

Another problem with this approach is that even if
Alice scrubs her outgoing Word content, she can’t be
sure her content will not be leaked unless she trusts Bob
to also scrub his content. Bob, recall, could be part of
another organization entirely and hence not subject to
Alice’s corporate security rules. Even if Alice sends Bob
plaintext, there’s still the chance he will convert it into
a Word document and end up inadvertently releasing
the data.

Some organizations already have specific recommen-
dations on the use of Word: to expose and then remove
hidden text during general practice, they use nothing but
various options and actions in Word itself (see
www.mltweb.com/prof/testdoc.doc). Using our exper-
imental results described earlier, the string-matching
method outputs this:

1|A sample document which explains why

people should send electronic files to

vendors without looking at it first.

1|Client

1|Date completed

1|Department

1|Destination

1|Disposition

1|Hanford

1|MSWordDoc

1|Microsoft Word 9.0

1|Microsoft Word Document

1|PC information

1|Something for everyone to read

1|Taylor

1|Title

1|Word.Document.8

1|bjbj

2|h0044311

1|normal.dot

1|somewhere over the rainbow

1|trash

The text our methods don’t find in this case is the text the
author purposefully hid, so it’s potentially of less interest
because the author is aware of its existence.

Clearly, the specification of a corporate security pol-
icy is somewhat difficult. As part of our everyday work,
this problem has shown itself to be important: our em-
ployer, AT&T, has thousands of Word documents, large
amounts of proprietary data, large numbers of industry

collaborators, and extensive material on public Web sites.
The collaboration of several suborganizations must be se-
cured for any useful impact to be made in preventing
leakage through this channel.

T he conditions that have allowed this state of affairs to
come about are a combination of Word’s default set-

tings and functionality, document usage patterns, and
the document format’s opaque and proprietary nature.
Search engine indices are not strictly required—custom
crawlers could perform that element of the exploita-
tion—but they make the job significantly easier and
faster. This fact hints at the dangers of any oracle,
whether it is of the classical prophetic or modern digital
variety. Specifically, if you ask a potentially nefarious
question, you will get the relevant answer. The urge to
publish, which drives many people and organizations to
(needlessly) put their content on the Web in the first
place, also contributes.

We believe our findings strongly motivate further
education for Word users, either through corporate se-
curity policies or mainstream exposure. The choice of
suitable policies and technical measures to combat this
effect is not simple, but the two alternatives we de-
scribed here are a good start. This article is specific to
Word, but our techniques could be extended to deal
with other file formats where such opportunity for hid-
den data exists.

Acknowledgments
Thanks to Dave Kormann and Eric Cronin for helpful discussion
during this work and Bruce Schneier for suggesting the discussion be
written down. Two reviewers also contributed useful suggestions on
style and content.

Reference
1. T. Calishain and R. Dornfest, Google Hacks, O’Reilly,

2003.

Simon Byers is Senior Member of Technical Staff at AT&T Labs
Research. His principle interests are data security, personal pri-
vacy, acquisition and processing of semistructured data, and
the potential for abuse in emerging complex information ori-
ented systems. He has a PhD in statistics from the University of
Washington. Contact him at byers@research.att.com.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 27

Simple everyday actions
can inadvertantly place
sensitive data squarely in the
public domain.

	footer1:

